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1 Normal, Separable and Galois Extensions

1.1 Normal extensions

Recall that the splitting field L of a polynomial p over K is a field such that all roots of p
are in L, and L is generated by the roots.

Proposition 1.1. L is the splitting field of some family of polynomials (over K ) iff any
irreducible p € K|z| splits into linear factors in L.

Proof. Suppose p is irreducible in K[z]| and has a root o € L. Look at M, the algebraic
closure of L. Any homomorphism ¢ : K[a] — M extends to a homomorphism ¢ : L — M
as M is algebraically closed. But im(¢)) must be L as L is the splitting field of some family
of polynomials; the splitting field is a uniquely determined subfield of M, as it is a subfield
generated by a family. So « is already in L. O

Example 1.1. Reducible polynomials need not split into linear factors in L. Let K = Q
and L = Q(+v/2). 2® — 2 has a root in L, but it does not split into linear factors.

Definition 1.1. A finite extension L/K 1is called normal if existence of 1 root of an
irreducible polynomial p implies that p factors into linear factors.

So L/K is normal iff it its the splitting field of some family of polynomials.
Proposition 1.2. Any degree 2 extension L/K is normal.

Proof. Suppose « is a root of (say) a®+axr+b = (a —a)(a—3). We have that a+ 3 = —a,
so B = —a — a. So f is already in the field K|a]. O

Example 1.2. Q[v/2]/Q is not normal. 2® — 2 = (z — V/2)(2? + V22 + (/2)?).

Example 1.3. Normal extensions of normal extensions need not be normal over the base

field. Q[v/2]/Q is not normal, but Q[v/2]/Q[v/2] and Q[v/2]/Q are.



1.2 Separable extensions

Definition 1.2. A polynomial p is called separable if it has no multiple roots, i.e. if p, p’
are coprime.

Definition 1.3. If L/K is an extension, o € L is called separable if its irreducible poly-
nomial is separable.

Definition 1.4. A field extension L/K is called separable if all its elements are separable.
Theorem 1.1. L/K is separable if K has characteristic 0.

Proof. « is a root of an irreducible p. We have that deg(p’) < deg(p), so p,p’ have no
common factors since p is irreducible. So p and p’ are coprime. ]

Remark 1.1. Why does this only work for characteristic 0?7 The statement that p, p’ have
no common factors does not hold if p’ = 0; in algebra, this does not imply that p is constant
if the characteristic of K is not 0.

Corollary 1.1. Any extension F,/F, of finite fields is separable.
Proof. Any element is a root of 27 — z. This has derivative —1, so (f, f') = 1. O

Example 1.4. Here is a non separable extension. Look at F(t);j the rational functions
with coefficients in F}, (contains F,(t7)). F,(t?) C F,(t), so t is a root of P — tP. This
factors as (z — t)P because (a + b)P = aP + bP, so all roots are the same. So ¢ cannot be the
root of any separable polynomial in F,(t?)[x].

1.3 Galois extensions

1.3.1 Galois extensions and Galois groups

Definition 1.5. An extension is called Galois if it is separable and normal.

Definition 1.6. The Galois group Gal(L, K) of L/K is the group of automorphisms of L
fixing all elements of K.

In a sense, the main point of Galois theory is that Gal(L, K) controls the extension
L/K. So we can reduce facts about fields to facts about groups.

Lemma 1.1. Suppose L/K is an extension of degree n and M /K is any extension. Then
there are at most n ways to define a map L — M that acts as the identity on K.

Proof. Suppose L is generated by «, so L = K[a]. Then « is a root of a polynomial of
degree < n. And f(«) is the root of a polynomial in M. This also have # n roots in M,
so there are < n possibilities for f(a). So there are < n possibilities for f.



Now suppose that L is generated by «, 8,7, .... Look at
K C K[o] € Kla, 8] C -

There are at most [K[a, 8], K[a] ways to extend a map from Kja] to K[a, 3]. So there
are < [K|o] : K|[K[a, 0], K[a]][K][e, 8,7], K[, S]] - - - ways to extend a map from K to L.
But this is just [L : K]. O

So if L/K is an extension of degree n, there are at most N automorphisms of L fixing
all elements of K.

Theorem 1.2. For a finite extension L/K, the following are equivalent:
1. L s the splitting field of a separable polynomial.
2. L is Galois.
3. [L: K] = |G|, where G is the Galois group of L/K.
4. K = LC (the set of elements of L fized by G).

Proof. (1) = (2): A splitting field is normal.

(2) = (3): Look at K C L C M, where M is the algebraic closure of K. Look at
maps [ — M extending the identity map of K. Since L/K is separable, there are n such
extensions (n = [L : K|). Why? Suppose L is generated by a of degree n (root of p). We
can map « to any root of p in M, and p has n roots as it is separable. We leave the case
where L is not generated by 1 element as an exercise.

L/K is normal, so the image of any map L — M lies in L. So there are > n maps from
L to L fixing K. From our lemma, we have that there are always < [L : K] maps L to L,
so lg| =[L: K].

(3) = (4): Look at K C LY C L. There are > n maps L to L extending L%. So
[L: L% >n. But [L: K] =njso K = LC.

(4) = (1): Let aw € L, Look at all conjugates of o under G = Gal(L/K). Look

at (x — a)(z — B)(x —~y)---. This is in K[z]| as all coefficients are invaraiant under G,
since K = L%, So « is a root of a separabble polynomial as «, 8,7, ... are distinct. The
polynomial splits into linear facts, which gives us normality. O

By our lemma, the third statement means that L is “as symmetric as possible.”

Example 1.5. Take z® — 2 over Q. This has 3 roots, v/2, V2w, and V/2w?, where w is a
cube root of 1.

Let L be the splitting field. Then [L : Q] = 6 because [L : Q[v/2]] = 2, and [Q[v/2] :
Q] =3. So G = Gal(L,Q) has order 6 = [L : Q]. It acts as permutations of «, 3,7, so it is
the symmetric group Ss.



Example 1.6. Consider C/R. The Galois group has order 2, and is generated by complex
conjugation  + iy — x — iy, which permutes the roots of 22 + 1 = 0.

Example 1.7. Consider Fyg/Fy. This is the splitting field of 2! — z, so it is Galois. So
the galois grou| has order 4 = [Fy¢ : F»]. What is it?

One element is the Frobenius element! o, which takes a — a?. Then @(ab) = p(a)p(b),
and p(a +b) = @(a) + @(b) since (a + b)? = a® +b? in Fy. If a is fiixed by ¢, then
a> = a,s0a =1or0. Soa € F3. So ¢ generates the Galois group, and ¢* = id.
wd(a) = (((a®)?)?)? = a'® = a. So the Galois group is Z/4Z.

1.3.2 Galois groups and subextensions

Theorem 1.3. Suppose M /K is a Galois extension with Galois group G. For any subex-
tension L (K C L C M), Gal(M/L) is a subgroup of G. Conversely, any subgroup H C G
induces a subextension MY | the elements fized by H.

In effect, we want to prove a bijection between subfields of M containing K and sub-
groups of G. We have a major problem: bigger subfields correspond to smaller subgroups.?

This can really be a source of confusion. Suppose that K C L C M, where L, M are
Galois extensions of K. Then Gal(M, K) is bigger than Gal(L, K).

Example 1.8. Let’s find all fields between Q and the splitting field of 2> — 2. Look at the
Galois group S3. The subgroups of S3 are:

3 3 § ((123),(132))

! According to Professor Borcherds, the ¢ stands for Frobenius, even though Frobenius was German, not
Greek. I can’t tell if this was a joke or not.
2Professor Borcherds has been doing Galois theory for decades, but this still trips him up sometimes.



The subextensions of this splitting field are:

Q(V2w?) Q(V2) Q(V2w

Q(V/2, V2w)
The indices of the subgroups will correspond to the degrees of the subextensions.

Example 1.9. Let ¢ be the a 7th root of unity in C. Then ¢* = 1, and (6 + ¢+ ¢4+ 3+
¢? 4+ ¢*1 = 0, where this polynomial is irreducible. This is (x — ¢)(x — ¢2)--- (2 — ¢%). So
QI[¢] is normal of degree 6.

The Galois group has order 6 = [Q[¢] : Q]. What is it? Suppose that o is in the
Galois group. Then o(¢) is a root of #8 + 2° + 2% + 23 + 22 + 271, so it is ¢* for some
1 < k < 6. Similarly, for 7, 7(¢) = ¢, so o7(¢{) = ¢*. So the Galoid group is the
group is (Z/7Z)* = Z/6Z, which is cyclic. There are 4 subgroups of orders 1, 2, 3, and 6,
respectively (of index 6, 3, 2, and 1), so there are 4 extension of Q contained in Q[(], of
degrees 6, 3, 2, and 1.
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