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1 Normal, Separable and Galois Extensions

1.1 Normal extensions

Recall that the splitting field L of a polynomial p over K is a field such that all roots of p
are in L, and L is generated by the roots.

Proposition 1.1. L is the splitting field of some family of polynomials (over K) iff any
irreducible p ∈ K[x] splits into linear factors in L.

Proof. Suppose p is irreducible in K[x] and has a root α ∈ L. Look at M , the algebraic
closure of L. Any homomorphism ϕ : K[α]→M extends to a homomorphism ψ : L→M
as M is algebraically closed. But im(ψ) must be L as L is the splitting field of some family
of polynomials; the splitting field is a uniquely determined subfield of M , as it is a subfield
generated by a family. So α is already in L.

Example 1.1. Reducible polynomials need not split into linear factors in L. Let K = Q
and L = Q( 3

√
2). x3 − 2 has a root in L, but it does not split into linear factors.

Definition 1.1. A finite extension L/K is called normal if existence of 1 root of an
irreducible polynomial p implies that p factors into linear factors.

So L/K is normal iff it its the splitting field of some family of polynomials.

Proposition 1.2. Any degree 2 extension L/K is normal.

Proof. Suppose α is a root of (say) a2 +ax+ b = (a−α)(a−β). We have that α+β = −a,
so β = −a− α. So β is already in the field K[α].

Example 1.2. Q[ 3
√

2]/Q is not normal. x3 − 2 = (x− 3
√

2)(x2 + 3
√

2x+ ( 3
√

2)2).

Example 1.3. Normal extensions of normal extensions need not be normal over the base
field. Q[ 4

√
2]/Q is not normal, but Q[ 4

√
2]/Q[

√
2] and Q[

√
2]/Q are.
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1.2 Separable extensions

Definition 1.2. A polynomial p is called separable if it has no multiple roots, i.e. if p, p′

are coprime.

Definition 1.3. If L/K is an extension, α ∈ L is called separable if its irreducible poly-
nomial is separable.

Definition 1.4. A field extension L/K is called separable if all its elements are separable.

Theorem 1.1. L/K is separable if K has characteristic 0.

Proof. α is a root of an irreducible p. We have that deg(p′) < deg(p), so p, p′ have no
common factors since p is irreducible. So p and p′ are coprime.

Remark 1.1. Why does this only work for characteristic 0? The statement that p, p′ have
no common factors does not hold if p′ = 0; in algebra, this does not imply that p is constant
if the characteristic of K is not 0.

Corollary 1.1. Any extension Fq/Fp of finite fields is separable.

Proof. Any element is a root of xq − x. This has derivative −1, so (f, f ′) = 1.

Example 1.4. Here is a non separable extension. Look at Fp(t)¡ the rational functions
with coefficients in Fp (contains Fp(t

p)). Fp(t
p) ⊆ Fp(t), so t is a root of xp − tp. This

factors as (x− t)p because (a+ b)p = ap + bp, so all roots are the same. So t cannot be the
root of any separable polynomial in Fp(t

p)[x].

1.3 Galois extensions

1.3.1 Galois extensions and Galois groups

Definition 1.5. An extension is called Galois if it is separable and normal.

Definition 1.6. The Galois group Gal(L,K) of L/K is the group of automorphisms of L
fixing all elements of K.

In a sense, the main point of Galois theory is that Gal(L,K) controls the extension
L/K. So we can reduce facts about fields to facts about groups.

Lemma 1.1. Suppose L/K is an extension of degree n and M/K is any extension. Then
there are at most n ways to define a map L→M that acts as the identity on K.

Proof. Suppose L is generated by α, so L = K[α]. Then α is a root of a polynomial of
degree ≤ n. And f(α) is the root of a polynomial in M . This also have 6= n roots in M ,
so there are ≤ n possibilities for f(α). So there are ≤ n possibilities for f .
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Now suppose that L is generated by α, β, γ, . . . . Look at

K ⊆ K[α] ⊆ K[α, β] ⊆ · · ·

There are at most [K[α, β],K[α] ways to extend a map from K[α] to K[α, β]. So there
are ≤ [K[α] : K][K[α, β],K[α]][K[α, β, γ],K[α, β]] · · · ways to extend a map from K to L.
But this is just [L : K].

So if L/K is an extension of degree n, there are at most N automorphisms of L fixing
all elements of K.

Theorem 1.2. For a finite extension L/K, the following are equivalent:

1. L is the splitting field of a separable polynomial.

2. L is Galois.

3. [L : K] = |G|, where G is the Galois group of L/K.

4. K = LG (the set of elements of L fixed by G).

Proof. (1) =⇒ (2): A splitting field is normal.
(2) =⇒ (3): Look at K ⊆ L ⊆ M , where M is the algebraic closure of K. Look at

maps l → M extending the identity map of K. Since L/K is separable, there are n such
extensions (n = [L : K]). Why? Suppose L is generated by α of degree n (root of p). We
can map α to any root of p in M , and p has n roots as it is separable. We leave the case
where L is not generated by 1 element as an exercise.

L/K is normal, so the image of any map L→M lies in L. So there are ≥ n maps from
L to L fixing K. From our lemma, we have that there are always ≤ [L : K] maps L to L,
so |g| = [L : K].

(3) =⇒ (4): Look at K ⊆ LG ⊆ L. There are ≥ n maps L to L extending LG. So
[L : LG] ≥ n. But [L : K] = n¡ so K = LG.

(4) =⇒ (1): Let α ∈ L, Look at all conjugates of α under G = Gal(L/K). Look
at (x − α)(x − β)(x − γ) · · · . This is in K[x] as all coefficients are invaraiant under G,
since K = LG. So α is a root of a separabble polynomial as α, β, γ, . . . are distinct. The
polynomial splits into linear facts, which gives us normality.

By our lemma, the third statement means that L is “as symmetric as possible.”

Example 1.5. Take x3 − 2 over Q. This has 3 roots, 3
√

2, 3
√

2w, and 3
√

2w2, where w is a
cube root of 1.

Let L be the splitting field. Then [L : Q] = 6 because [L : Q[ 3
√

2]] = 2, and [Q[ 3
√

2] :
Q] = 3. So G = Gal(L,Q) has order 6 = [L : Q]. It acts as permutations of α, β, γ, so it is
the symmetric group S3.
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Example 1.6. Consider C/R. The Galois group has order 2, and is generated by complex
conjugation x+ iy 7→ x− iy, which permutes the roots of z2 + 1 = 0.

Example 1.7. Consider F16/F2. This is the splitting field of x16 − x, so it is Galois. So
the galois grou[ has order 4 = [F16 : F2]. What is it?

One element is the Frobenius element1 ϕ, which takes a 7→ a2. Then ϕ(ab) = ϕ(a)ϕ(b),
and ϕ(a + b) = ϕ(a) + ϕ(b) since (a + b)2 = a2 + b2 in F2. If a is fiixed by ϕ, then
a2 = a, so a = 1 or 0. So a ∈ F3. So ϕ generates the Galois group, and ϕ4 = id.
ϕ4(a) = (((a2)2)2)2 = a16 = a. So the Galois group is Z/4Z.

1.3.2 Galois groups and subextensions

Theorem 1.3. Suppose M/K is a Galois extension with Galois group G. For any subex-
tension L (K ⊆ L ⊆M), Gal(M/L) is a subgroup of G. Conversely, any subgroup H ⊆ G
induces a subextension MH , the elements fixed by H.

In effect, we want to prove a bijection between subfields of M containing K and sub-
groups of G. We have a major problem: bigger subfields correspond to smaller subgroups.2

This can really be a source of confusion. Suppose that K ⊆ L ⊆ M , where L,M are
Galois extensions of K. Then Gal(M,K) is bigger than Gal(L,K).

Example 1.8. Let’s find all fields between Q and the splitting field of x3− 2. Look at the
Galois group S3. The subgroups of S3 are:

S3

〈(1 2 3), (1 3 2)〉

〈(1 2)〉 〈(2 3)〉 〈(1 3)〉

1

3
3 3

2

3
2

2
2

1According to Professor Borcherds, the ϕ stands for Frobenius, even though Frobenius was German, not
Greek. I can’t tell if this was a joke or not.

2Professor Borcherds has been doing Galois theory for decades, but this still trips him up sometimes.
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The subextensions of this splitting field are:

Q

Q(w)

Q( 3
√

2w2) Q( 3
√

2) Q( 3
√

2w)

Q( 3
√

2, 3
√

2w)

3
3 3

2

3
2

2
2

The indices of the subgroups will correspond to the degrees of the subextensions.

Example 1.9. Let ζ be the a 7th root of unity in C. Then ζ7 = 1, and ζ6 + ζ5 + ζ4 + ζ3 +
ζ2 + ζ+1 = 0, where this polynomial is irreducible. This is (x− ζ)(x− ζ2) · · · (z − ζ6). So
Q[ζ] is normal of degree 6.

The Galois group has order 6 = [Q[ζ] : Q]. What is it? Suppose that σ is in the
Galois group. Then σ(ζ) is a root of x6 + x5 + x4 + x3 + x2 + x+1, so it is ζk for some
1 ≤ k ≤ 6. Similarly, for τ , τ(ζ) = ζ`, so στ(ζ) = ζk`. So the Galoid group is the
group is (Z/7Z)∗ ∼= Z/6Z, which is cyclic. There are 4 subgroups of orders 1, 2, 3, and 6,
respectively (of index 6, 3, 2, and 1), so there are 4 extension of Q contained in Q[ζ], of
degrees 6, 3, 2, and 1.
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